

SafeRail – Improving Safety At Railway Level Crossings

IAP Workshop

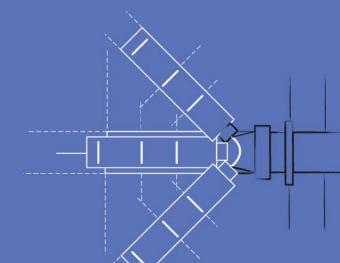
Für die Erde ins All - Transport & Logistik: Herausforderungen und mögliche raumfahrtbasierte Lösungsansätze

3. Dezember 2013, Darmstadt

SafeRail - Improving Safety at Railway Level Crossings

An activity within the Integrated Applications Program (IAP) Funded by the European Space Agency (ESA)

Agenda


- **Quick Company Overview**
- **Project Background**
- **Project Overview**
- **Overview about Tasks**
- **Next Steps**

Company Overview

Berner & Mattner Systemtechnik

Key Data

• Foundation: 1979

Employees: 470

Locations 7

Portfolio

- Systems Engineering
- Software Engineering
- Safety Engineering

Sectors

- Space & Defence
- Engines & Energy, Machinery
- Transportation, Automotive

Customers

 MBDA, EADS, MAN, MTU, G&D, Siemens, DB, ÖBB, Bombardier, Audi, BMW, Daimler, VW, ESA, DLR, Astrium, Tesat

COMPANY OVERVIEW

Assystem Group

ASSYSTEM, INDUSTRIAL ENGINEERING OUT

IN PARTNERSHIP WITH KEY INDUSTRY PLAYERS AND ON THE STRENGTH OF ITS BALANCED BUSINESS PORTFOLIO, GLOBAL ORGANISATION AND SOLID FINANCIAL FOUNDATION, ASSYSTEM CONTINUES TO BUILD SUSTAINABLE GROWTH.

CANADA UNITED STATES UNITED KINGDOM

FRANCE

€M 521. **REVENUE IN 2012**

ROMANIA SPAIN **PORTUGAL** HEADCOUNT

REVENUE IN 2012

INTERNATIONAL PRESENCE

ALL OVER THE WORLD, ASSYSTEM PROVIDES SUPPORT FOR ITS CUSTOMERS' PROJECTS.

> AFRICA MIDDLE-EAST ASIA

GERMANY AUSTRIA BELGIUM **SWITZERLAND**

,436 HEADCOUNT

€M 120.2 **REVENUE IN 2012**

2 BUSINESS AREAS

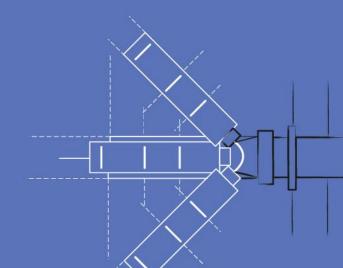
ASSYSTEM DEVELOPS EXPERTISE IN INDUSTRIAL ENGINEERING WITH GLOBAL CHAMPIONS, AT THE CUTTING EDGE OF THE NEEDS OF A DIVERSIFIED MARKETPLACE.

COMPLEX INFRASTRUCTURE ENGINEERING

SUPPORTING BUSINESSES IN MANAGING THEIR INDUSTRIAL INVESTMENTS, FROM INFRASTRUCTURE DESIGN THROUGH TO DISMANTLING, INCLUDING COMMISSIONING, OPERATIONS AND MAINTENANCE.

OUTSOURCED R&D

DESIGNING, TESTING AND VALIDATING HARDWARE AND SOFTWARE DEVELOPMENT FOR PRODUCTS AND SYSTEMS AIMED AT INDUSTRY SECTORS AS WELL AS NEW TECHNOLOGIES.



OF REVENUE ACHIEVED INTERNATIONALLY

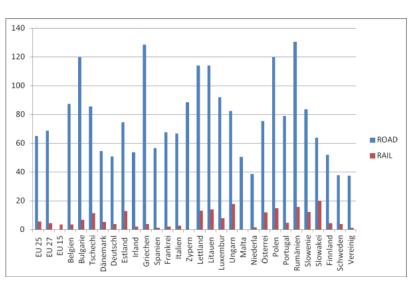
Background

Objectives

Improve safety at Railway Level Crossings (RLC)

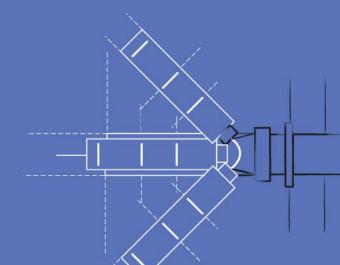
- Benchmark: Reduce number of fatalities/accidents at RLC
- Requirements: Needs and constraints of relevant users and stakeholders
- Approach: Develop an "Integrated Solution" (Rail/Automotive/Space/ ...)
- Method: Road Safety Concept of "5 Es" (Engineering, Education, Enforcement, Encouragement, and Evaluation)

Scope


- Entire Lifecycle of RLC (planning, authorization, operations, ..)
- Any User / Stakeholder: Authorities (Road/Rail), Traffic Planners, Road Users, Rail Infrastructure Manager, Railway Undertakings, Enforcement Bodies, Insurance Companies, Emergency Services, ...
- Any kind of RLC: main lines (dense traffic), secondary lines (passive RLCs)

Challenges

- 1. Main accident cause: Distraction of Road User
- 2. Railway safety ignores Human Factors
- 3. High invest in RLC in Europe (>100 Mio per country per year)
- 4. Transition in safety ideology from rule based to risk based
- 5. RLC account for 50% of Rail fatalities
- 6. RLC account for <1% of Road fatalities
- 7. Acceptance / Approval of Space Techn. is very difficult for Rail Sector



Comparison of Fatalities per Million Habitants in 2009

Project Overview

Project Partners

Berner & Mattner Systemtechnik (Lead, Germany)

- Railway Safety: Software + Systems Engineering
- Automotive: Telematics, Driver Assistance, ...

Avanti Communications (UK)

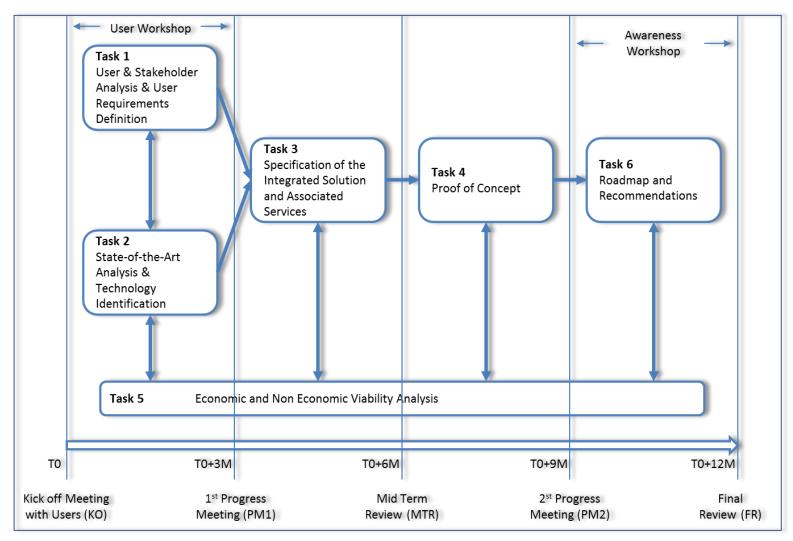
Satellite Operator

Brimatech Services (Austria)

Technology Viability Analysis / Stakeholder Involvement

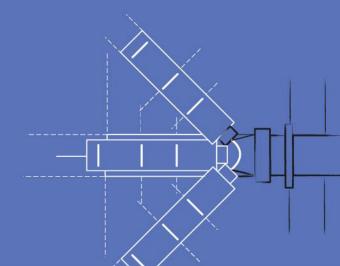
JOANNEUM RESEARCH (Austria)

Satellite Communication, Earth Observation


TeleConsult Austria

Precise and Reliable Positioning Systems

Project Logic



Task 1
User & Stakeholder Analysis &
Requirements Definition

Requirements Process

2 Workshops / 25 Phone Interviews

Users / Stakeholders from DE, AT, PL, FR, CZ, ...

- Rail Safety Authorities
- Road Safety Councils
- Rail Companies
- Insurance Companies
- Transport Safety Research
- Car Driver Associations

Current shortcomings

Literature Studies

Directives / Standards

- **⇒** EN 5012x
- **⇒** TSIs
- **⇒** ISO 26262
- **\(\begin{array}{c}\)**

Hazard Logs

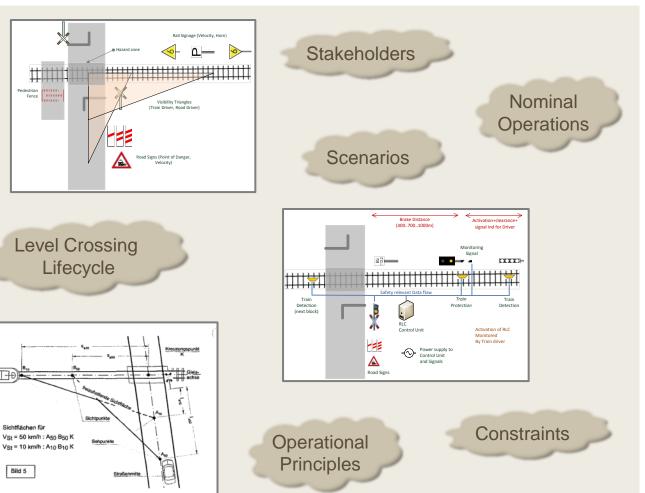
Accident Reports

User Needs / User Requirements

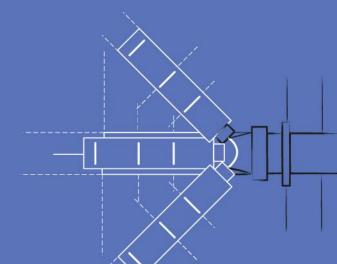
"As a car driver I don't want to stop"

Users / Stakeholders

Traffic • Software • Service



User Requirements



Task 2
State of the Art Analysis &
Technology Identification

State-of-the-Art Analysis

Technologies / Solutions

- Positioning Systems
- Communication Systems
- Earth Observation
- Navigation support services
- Road Safety Technologies

Current railway level crossing systems

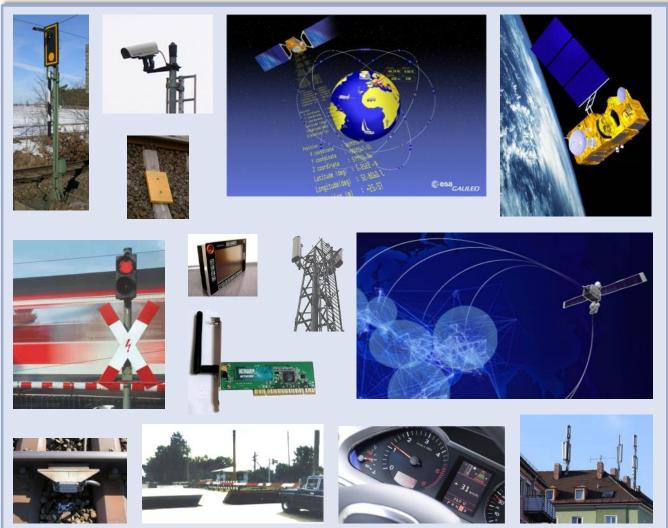
- Evolution of RLC over time
- Train Control Systems
- RLC Components and Functional Analysis
- **⇒** Risk Models

Analysis of R&D projects

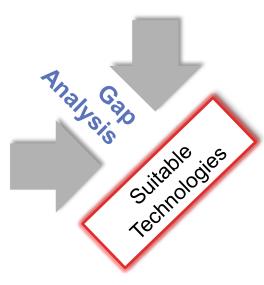
Projects related to...

- Rail Activities
- Navigation Support Systems
- Road Signs
- User Terminals Augmenting
- Road User Awareness

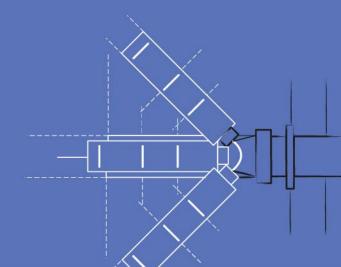
Critical Analysis



Technology Identification



Technology Identification


User Requirements

Task 3
Specification Integrated Solution &
Associated Services

Service and System Definition

Service Definition

Service Requirements

- "What is delivered to whom and when?"
- ⇒ "How well is it delivered?"
- "How is the information delivered?"

Service Provisioning Chain

- Information sources and flows
- Involved actors
- Responsibilities of actors

System Requirements & Architecture

System Requirements

- Functions
- Performance
- Interfaces
- Operational environment

System Architecture

- Technical architecture
- Sub Systems & Interfaces
- Design Justification
- Concept of Operations

Feasibility Assessment

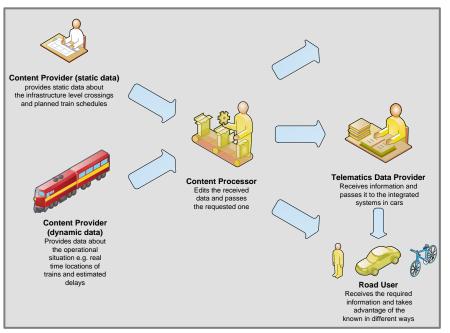
Integrated Service

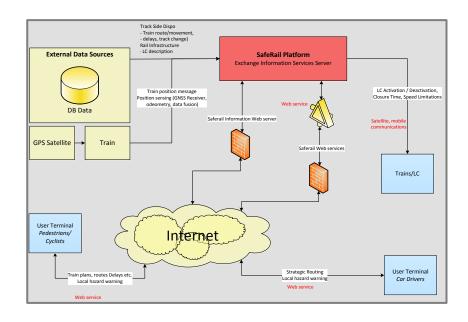
Ref.: ESA Guidelines for Service and System Definition

Selection of SafeRail Services

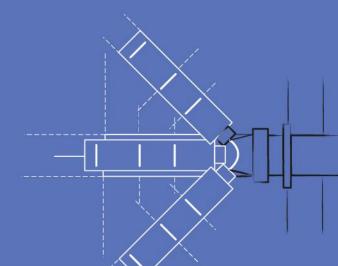
ID	Description		
1	Road User assistance functions		
1a	- Comfort assistance functions (strategic routing)		
1b	- Support the situational awareness (Information and Warnings)		
1c	- Active safety (automatic braking,)		
2	Wireless Train Detection		
2a	Optimization of closure times		
2b	Cost-effective/affordable upgrade from passive to active level crossing		
3	Enable rescue operations in case of permanent break-downs in the hazard zone of level crossings		
4	Reduction of rail traffic suspension due to exceptional road vehicles		
5	Inspection of sight triangles		
6	Support for enforcement operations		
7	Increase safety at level crossings by collecting and analysing of risk factors		
8	Blue Force Rerouting		
9	Improve compliance with traffic rules by detecting temporary and illegal level crossings		

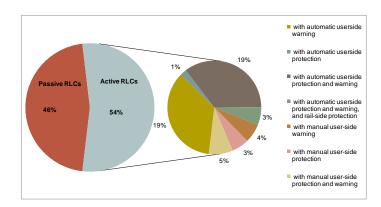
Selection of Integrated Services

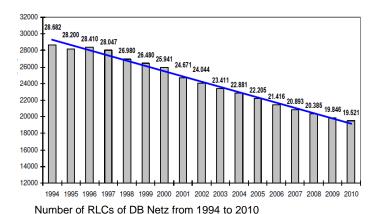



ID	Service Title	Integ. Solution
1a	In advance information for Road User	Road User Operations
1b	Hazard warning for Road User	
1c	Protecting the Road User	
2a	Reducing closure times	Railway Operations
2b	Cost affordable level crossing upgrade	
5	Inspection of level crossings	Maintenance Railway

Examples from Service "Operations"




Task 5
Economic & Non Economic
Viability Analysis



Viability Analysis

Objective

"Identify non-technical aspects which are relevant to a successful implementation of the integrated solution and associated services in a sustainable manner and assess the influence of these aspects on the implementation"

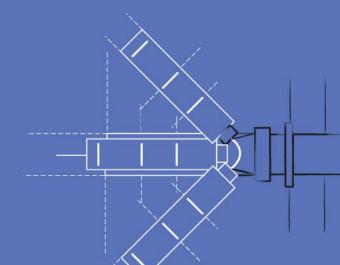
Market Analysis

- Market Segmentation / Size
- Drivers and Barriers
- Competitive Analysis

Cost Benefit Analysis

- Cost Drivers
- Commercial Benefits

Revenue Indicators


Non-Economic Viability Aspects

e.g. Regulatory and Legal Frameworks

Next Steps

Next Steps

Vielen Dank für Ihr Interesse!

Dipl.-Ing. (FH)

Rainer Grimm

Department Manager Industrial Embedded Systems

Tel. +49 (0) 89 608090-252 Fax +49 (0) 89 608090-299 Mobil +49 (0) 172 830 6578

rainer.grimm@berner-mattner.com

Berner & Mattner Systemtechnik GmbH Erwin-von-Kreibig-Straße 3 D-80807 München

www.berner-mattner.com

in partnership with

